
Knowledge-Based Systems 228 (2021) 107301

a

b

c

d

e

f

i
l
a
b
b
w
t
w
t
t
p

t
c
o
e
s
n
g
t
w

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Graph classification based on skeleton and component features
Xue Liu a, Wei Wei b,c,d,e,∗, Xiangnan Feng b,c,e,f, Xiaobo Cao a, Dan Sun b

Beijing System Design Institute of Electro-Mechanic Engineering, Beijing, 100854, China
School of Mathematical Sciences, Beihang University, Beijing, 100191, China
Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Ministry of Education, 100191, China
Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, 100191, China
Peng Cheng Laboratory, Shenzhen, Guangdong, 518066, China
Center for Humans and Machines, Max Planck Institute for Human Development, Berlin 14195, Germany

a r t i c l e i n f o

Article history:
Received 24 January 2021
Received in revised form 8 July 2021
Accepted 11 July 2021
Available online 13 July 2021

Keywords:
Graph representation
Graph classification
Feature learning

a b s t r a c t

Most existing popular methods for learning graph embedding only consider fixed-order global struc-
tural features but lack hierarchical representation for structures. To address this weakness, we propose
a novel graph embedding algorithm named GraphCSC that realizes classification leveraging skeleton
information from anonymous random walks with fixed-order length, and component information
derived from subgraphs with different sizes. Two graphs are similar if their skeletons and components
are both similar. Thus in our model, we integrate both of them together into embeddings as graph
homogeneity characterization. We demonstrate our model on different datasets in comparison with
a comprehensive list of up-to-date state-of-the-art baselines, and experiments show that our work is
superior in real-world graph classification tasks.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Graph classification to distinguish the class labels of graphs
n a dataset is an important task with practical applications in a
arge spectrum of fields (e.g., bioinformatics [1,2], social network
nalysis [3] and chemoinformatics [4]). In these areas, data can
e usually represented as graphs with labels. For example, in
ioinformatics, a protein molecule can be represented as a graph
hose nodes correspond to atoms, and edges signify the exis-
ence of chemical bonds between atoms. The graphs are allocated
ith different labels on the basis of various functions. To classify
hese graphs, we usually make a common assumption that pro-
ein molecules with similar structures exhibit similar functional
roperties.
More recently, there have been a surge of approaches that seek

o learn representations or embeddings and then make classifi-
ation [5–8]. The idea behind these learning approaches focuses
n graph structure representation by learning a mapping that
mbeds nodes or entire (sub)graphs into low-dimensional vector
pace. Most methods belong to one of the two categories: (1)
eural network methods that learn large-scale structures of target
raph, (2) kernel methods that focus on small-size structures of
arget graph. Different graph structures imply distinctive features,
hich lead to various possible classification outcomes.

∗ Corresponding author.
E-mail address: weiw@buaa.edu.cn (W. Wei).
ttps://doi.org/10.1016/j.knosys.2021.107301
950-7051/© 2021 Elsevier B.V. All rights reserved.
Graph neural networks (GNNs) [9–11] use a recurrent network
framework to transmit information from a calculated node to
another until reaching a stop situation. Analogous to image-based
convolutional neural networks (CNNs) [12], PATCHY-SAN (PSCN)
is motivated to operate on locally connected regions of the input
to learn graph embeddings [13]. Graph convolutional networks
(GCNs) [14–16] operate on graph data directly by spectral filters
to exploit local areas, and then extract meaningful local features
shared within the entire graph to get a large-scale represen-
tation. Recently, some important subsequent variants of graph
neural networks are proposed. MLC-GCN introduces an adaptive
structural coarsening module to GCNs and significantly improves
representation ability [17]. GNNs with structured multi-head self-
attention architecture achieves good predicting accuracy since
this self-attention strategy makes full use of graph information
among node, layer and graph levels [18]. The success of neural
networks relies on enormous amount of data as well as iterative
calculations. This iterative mechanism involves local information
of graph into the overall embedding as learning process going on.

Subgraph isomorphism has been proven to be NP-complete,
however graph isomorphism problem neither has been proven
NP-complete nor could be solved by a polynomial-time algo-
rithm [19]. Graph kernels [20–22] differentiate two graphs by
recursively decomposing them into substructures and then defin-
ing a function to make classification based on graphs similar-
ity measures in an unsupervised way. Graph kernels bridge the
gap between graph data and a wide range of machine learning
methods such as Support Vector Machines (SVM), regression,

https://doi.org/10.1016/j.knosys.2021.107301
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lustering and Principal Components Analysis (PCA), etc. Graph
ernel approaches can be divided into two categories in general:
alk-based patterns [6] and limited-size subgraph methods. In
alk-based patterns, graph kernels count matched random walk
airs between two graphs [23]. The shortest path kernels count
he number of shortest path pairs with same beginning node,
ink labels as well as length in two graphs [24]. Graphlet kernels
eal with graph isomorphism by counting the occurrences of all
ypes of fixed size subgraphs [25,26]. Graphs are considered to
e similar if they share common subgraphs as many as possible.
eighborhood Subgraph Pairwise Distance Kernel (NSPDK) sets
he source nodes of two graphs at a fixed distance as roots,
nd then calculates the number of identical pairs of subgraphs
hat grow up from roots [4]. Weisfeiler–Lehman graph kernels
re highly efficient kernels to measure graph isomorphism using
ubtree-like patterns [20].
There are two critical limitations of graph kernels: (1) Many

f them do not provide explicit embeddings, so that kernels are
ot suitable for many proposed machine learning algorithms that
equire operations on vectors directly. (2) Specific substructure
i.e., random walks, subgraphs, etc.) parameters need to be pre-
et, for instance, the length of random walk or the shapes of
ubgraphs. This could inevitably miss substructures not in preset
hapes yet actually crucial to the embeddings.
Anonymous Walk Embeddings (AWE) is a novel graph em-

edding method that relies on the distribution of special random
alks named anonymous random walks [27]. In analogy to graph
ernels and to avoid sparse distribution, AWE method uses ran-
om walks in anonymous manner to catch the ‘‘skeletons’’ of the
hole graph. Micali et al. has shown that anonymous walks are
arkov processes from starting nodes [28] and are able to recon-
truct the original graphs with adequate samplings. Two graphs
ith similar distributions of anonymous walks are regarded as
opological similar [27].

However, due to low distributions, AWE may neglect impor-
ant subgraphs which actually determine crucial graph properties.
s illustrated in Fig. 1, we take phenol (C6H5OH) and methyl-
enzene (C6H5CH3) as a simple example. Each of them can be
ecomposed into two major parts, the main structure (benzene
ing) as the skeleton, and functional groups (i.e., hydroxy ‘‘–OH’’
nd methyl ‘‘–CH3’’). Both of them play an important role in

molecular properties and functions. Taking these two molecules
as topological graphs and implementing random walks on them,
it is shown that the frequency of benzene ring edges being cov-
ered is twice more than that of hydroxy or methyl edges. In
AWE, these two graphs are structure similar since random walks
catch same main structures as skeletons. However, phenol and
methylbenzene have quite different chemical properties, which
are determined by their different functional groups and are easy
to be neglected because of low distributions. In addition, AWE
lacks a hierarchical representation of the entire graph structure:
structures obtained by AWE have identical size (walk length),
thus substructures whose sizes are not equal to the anonymous
walk structures could not be observed and represented efficiently.
Our approach. We design a novel data-driven framework named
GraphCSC that represents entire graph in low-dimension vectors
containing both main structure features and components infor-
mation in a global view. On the one hand, inspired by the success
of AWE, our methodology uses anonymous walks to represent
graph skeleton information. On the other hand, in order to avoid
huge computational complexity, we take a sampling strategy by
finding special subgraphs, i.e., frequent subgraphs, to represent
graph components. Frequent subgraphs are determined by a fixed
threshold hyperparameter, which indicates what kinds of sub-
graphs can be regarded as frequent ones. The frequent-based

subgraphs contain not only the underlying semantics within an

2

individual graph but also the relationships among graphs. To
learn graph embedding, motivated by a novel supervised docu-
ment method Paragraph Vector-Distributed Bag of Words (PV-
DBOW) [29], anonymous walks and frequent subgraphs in our
model are both treated as words and each graph corresponds to a
document. Two graphs are close in embedding space if they share
similar skeletons and components.
Our contribution. To the best of our knowledge, GraphCSC is
a new framework that learns embeddings consisting of both
skeleton features and component information compared to other
existing embedding approaches. GraphCSC actually studies the
representation of graph structures in both horizontal and vertical
perspectives: in horizontal perspective, we attempt to charac-
terize relatively high-order structures using anonymous random
walks with same walk lengths, which determines the skeletons
of graphs; in vertical perspective, our model focuses on what
kinds of subgraphs with different sizes or shapes they have.
We use a Natural Language Processing (NLP) training framework
with skeletons and components together as inputs to learn graph
representation with combined information. Through empirical
evaluation on multiple real-world datasets, experiments show
that our model is competitive among a series of established
baselines.

2. Problem statement

In this work, we consider the graph classification task. In the
general setting, for a set of graphs G = {G1, . . . ,GN} with labels,
the goal is to learn a function ϕ : G → L, where G denotes
the input space of graphs and L is the set of graph labels. Each
weighted graph Gi with label li, i = 1, . . . ,N , is a tuple Gi =

(Vi, Ei,Ωi), where Vi is the set of ni vertices from Gi, Ei ⊆ Vi×Vi is
the set of edges from Gi, andΩi represents the set of edge weights
from Gi.

To learn the embedding vectors of graphs as inputs of machine
learning model is the core part in graph classification problems.
In more details, given a set of graphs G = {G1, . . . ,GN}, the goal
of embedding is to learn a graph representation matrix XN×d by
a mapping ψ : G → R1×d, where each ith row of XN×d denotes a
d-dimension vector of graph Gi.

3. Background

We will leverage two techniques Skipgram [6] and PV-DBOW
to learn graph representation, which have already been widely
applied in NLP. Before we propose our approach, we review these
powerful models and state them as background of our model.

3.1. word2vec and Skipgram

To get continuous-valued word vector representation is the
main task in NLP applications. word2vec [30] uses Skipgram
to learn low-dimension embeddings of words that capture rich
semantic relationships among them. Skipgram maps words con-
tained in similar sentences to ‘‘near’’ positions in embedding
space, i.e., their representation vectors are similar.

Given the target word ωt from vocabulary set V and a se-
quence of words ω1, . . . , ωt , . . . , ωT , the context ωt−c, . . . , ωt ,

. . . , ωt+c is denoted as a fixed number of words surrounding
ωt within a window c . Skipgram maximizes the co-occurrence
probability among words that appear in context:

T∑
log Pr(ωt−c, . . . , ωt+c |ωt ). (1)
t=1
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Fig. 1. Overview of topological graphs (as shown in (a)), molecular chemical structures (as shown in (b)), their corresponding functional groups and subgraphs (as
shown in (c)) of phenol (C6H5OH) and methylbenzene (C6H5CH3). In (a), we do random walks with walk length l = 4 from each node on every topological graph of
phenol and methylbenzene. The frequency p of each edge covered in random walks is p =

me
M , where me is the frequence of edge e being covered and M denotes

he total number of edges being covered. Edges with different frequencies are represented in different colors. Phenol and methylbenzene in (c) can be decomposed
nto three functional groups (hydroxy, benzene and methyl), which are regarded as 2-order subgraph (2-hop path), hexagon loop (6-order subgraph) and cross,
espectively.
P

he conditional probability Pr(ωt−c, . . . , ωt+c |ωt ) could be ap-
proximated under the following independence assumption:

Pr(ωt−c, . . . , ωt+c |ωt ) =

t+c∏
j=t−c,j̸=t

Pr(ωj|ωt ). (2)

3.2. Softmax and negative sampling

Learning such a posterior distribution Pr(ωt+j|ωt ), conven-
tional classifiers such as logistic regression require vast com-
putational resources since the number of labels is huge and
equals vocabulary size |V |. To avoid heavy calculation, conditional
probability distribution Pr(ωj|ωt ) is defined by a Hierarchical
Softmax [31]:

Pr(ωj|ωt ) =
exp(ωt · ωj)∑
|V |

i=1 exp(ωt · ωi)
, (3)

where ωt and ωt+j are embedding vectors for word ωt and ωt+j.
hus the co-occurrence probability (1) is written as:
T∑

t=1

log
t+c∏

j=t−c,j̸=t

exp(ωt · ωj)∑
|V |

i=1 exp(ωt · ωi)
. (4)

Here to speed up the training process of Skipgram, negative
sampling [32] method stochastically takes a small set of words
as negative samples which are not involved in context. Then only
target word and negative samples are updated instead of every
word from vocabulary set V during the iterative training process.
This strategy would be efficient especially for cases where tasks
face huge computational pressure.

3.3. doc2vec And PV-DBOW

In analogy to word2vec, doc2vec [29] uses PV-DBOW to learn
representations of arbitrary size document in a document set.
More specifically, given a document set D = {D1, . . . ,DN} with a
set of words V = {ω1, . . . , ω|V |}, for the target document Dt ∈ D
which contains a sequence of words {ω , . . . , ω }, the goal is to
1 l

3

learn low-dimension vector representation of document Dt by
maximize the following log probability:

l∑
i=1

log Pr(ωj|Dt ). (5)

The conditional probability Pr(wj|Dt ) above is calculated as:

r(ωj|Dt ) =
exp(Dt · ωj)∑
|V |

i=1 exp(Dt · ωi)
, (6)

where Dt and ωj are corresponding representation vectors of Dt
and ωj, and |V | is the number of all words across all documents in
D. The log probability (5) could be also approximated efficiently
using negative sampling.

4. Proposed model

Our proposed model GraphCSC has two main modules, skele-
ton module and component module, as summarized in Fig. 5.
Skeleton module (in Algorithm 1) and component module (in
Algorithm 2) represent corresponding substructures separately
but synchronously. GraphCSC integrates these two modules and
optimizes overall loss function by gradient descent strategy.

4.1. Skeleton module

Here we focus on common higher-order structures repre-
sentation among graphs. We utilize a special form of random
walk, anonymous random walk, to represent such structures and
provide the definition of skeleton of graphs.

4.1.1. Anonymous random walks
In graph G, a random walk w is defined as a finite sequence

(v0, v1, . . . , vl) with length l, where v0 represents the root node
and node vi+1 is sampled independently among the neighbors of
node vi.

Random walks are regarded as Markov processes and recently,
anonymous random walks, as special forms of random walks,
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Fig. 2. We sample four random walks with length 3 (marked in different colors)
n G1 , G2 and illustrate their relation with corresponding anonymous random
alks.

ave been proven to be capable of learning graphs structural
roperties and reconstructing graphs with full descriptions of
tate of every node appeared along the random walk process in
ts own label space instead of global label space [28]. Anony-
ous random walks translate random walks into a sequence of

ntegers recording positions that appear first. This makes walks
n anonymous experiments more flexible and compact. More
recisely, the anonymous random walk for random walk w =

v0, v1, . . . , vl) with length l is a sequence of integers a = g(w) =

f (v0), f (v1), . . . , f (vl)), in which f is the position function defined
s f (vi) = |(v0, . . . , vi′ )|, where i′ is the smallest integer such that
i′ = vi.
Example. Random walks (A, B, C,D) and (B, C,D, A) sampled

from G1, (A, A, B, C) and (A, A,D, C) from G2 in Fig. 2 are com-
pletely different. However, in anonymous randomwalks view, the
new label for each node is redefined as the position of the first
occurrence of node with same label in the random walk sequence.
This makes the initial four different random walks be converted
into two anonymous random walks, (1, 2, 3, 4) and (1, 1, 2, 3).

As shown in Fig. 3, all different random walks with length 3 in
G1 and G2 from Fig. 2 could be converted into only 8 anonymous
random walks. Random walks record the labels information of
nodes traveled, and with sufficient samples, they can accurately
capture structure traits and reconstruct the original graph. But
over precise information will not be efficient to capture graph
structure features because of sparse distribution over all random
walks.

4.1.2. Skeleton
We draw independently a set of ξ random walks WGi =

{w1, . . . , wξ } with length l on Gi from graphs set G = {G1, . . . ,Gi,

. . . ,GN}, and calculate its µ anonymous random walks AGi =

{a1, . . . , aµ}.
For a large graph Gi, to count all possible anonymous random

walks requires vast computational resources. However, sampling
ζ random walks with length l to approximate actual distribution
of anonymous random walks, the overall computing running time
will be O(ζ l) [16]. The relation between the estimation of samples
4

Fig. 3. All kinds of different random walks with length 3 in G1 and G2 from
Fig. 2 and their corresponding anonymous random walks.

number ζ and the number of anonymous random walks λ is
determined by hyperparameters ε and δ [33]:

ζ = [
2
ε2

(log(2λ − 2) − log(δ))], ε > 0, 0 ≤ δ ≤ 1. (7)

Next we tend to leverage vectors to indicate whether some
specific anonymous random walks are contained in a graph or
not. Given graphs set G = {G1, . . . ,Gi, . . . ,GN}, we sample
random walks with length l on each graph in G as set W =

{w1, . . . , wm, . . . , wξ }. If the corresponding anonymous random
walks set A = {a1, . . . , as, . . . , aµ} has µ unequal elements, then
the skeleton for graph Gi is denoted as a 1 × µ shape vector
sGi = [ξs]1×µ, where

ξs =

{
1, if as ∈ Gi

0, else
, s = 1, . . . , µ. (8)

Algorithm 1: Skeleton Module.

Input: G = {G1, . . . ,GN}: graphs set; l: random walk length; T :
random walk times.

Output: A: anonymous random walks set; sGi , i = 1, . . . ,N:
skeleton for each graph Gi in G.

1: % Mining Anonymous Walks
2: A = ∅

3: for each Gi in G do
4: AGi = ∅

5: for each node vj in V (Gi) do
6: for k = 1; k < T ; k + + do
7: w = RandomWalk(Gi, vj, l)
8: a = g(w)
9: if a not in AGi then

10: AGi = AGi ∪ {a}
11: end if
12: end for
13: end for
14: end for

15: A =

N⋃
i=1

AGi

16: % Getting skeletons
17: for each Gi in G do
18: initialize sGi = [sk]1×|A|, sk = 0
19: for each anonymous random walk ak in A do
20: if ak in Ai then
21: sk = 1
22: end if
23: end for
24: end for
25: return A; sGi , i = 1, . . . ,N
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Fig. 4. Different kinds of subgraphs mined from G1 and G2 in Fig. 2.

4.2. Component module

Component module uses a more flexible approach to capture
similarity between two graphs by frequent patterns (e.g., item-
sets, subsequences, or subgraphs), which appear in a dataset
with frequency no less than a user-specified minimum support
(min_sup) threshold. Component module basically includes three
steps: (1) mining frequent subgraphs, (2) selecting features, (3)
learning component features.

4.2.1. Frequent subgraph
A graph sg is called a subgraph of a graph G if nodes satisfy

(sg) ⊆ V(G) and edges satisfy E(sg) ⊆ E(G). Two graphs are
similar if their subgraphs are similar since subgraphs have been
recognized as fundamental units and building blocks of com-
plex networks [34–36]. But usually only a fraction of the large
amount number of subgraphs are actually relevant to data mining
problems.

Our methodology focuses on mining subgraphs according to
different proportions in graph set, and then embeds these distri-
bution features into graph component representation. Let sg be a
subgraph in subgraphs set SG mined from G = {G1, . . . ,Gi, . . . ,

GN}, and it will be called frequent subgraph fsg if |{Gi∈G|sg∈Gi}|
|G|

≥ θ ,
here θ denotes the min_sup threshold and 0 ≤ θ ≤ 1. This

raction |{Gi∈G|sg∈Gi}|
|G|

is defined as the support of Gi.
Example. We still take G1, G2 in Fig. 2 and subgraphs sg1, sg2,

g3 in Fig. 4 as examples. If we set min_sup threshold θ = 1, only
ubgraph sg1 can be regarded as frequent subgraph. However, if
e set min_sup threshold θ = 0.5, all of sg1, sg2 and sg3 will be
egarded frequent.

Frequent pattern, as a form of non-linear feature combinations
ver the set of different subgraphs, has higher discriminative
ower than that of single kind of subgraph because they cap-
ure more underlying semantics of the data. The key point is to
pecify the hyperparameter min_sup threshold θ used in model
n frequent pattern, and we will study the influence of θ for
achine learning tasks in Section 5. If an infrequent feature is
elected, the model cannot generalize well on the test data since
t is built based on statistically minor observations, hence the
iscriminative power of low-support features will be limited [37].

.2.2. Component
To mine all frequent subgraphs will face two challenges: (1) It

s computational infeasible to find all subgraphs since the time
omplexity equals O(2|V |). (2) Subgraph isomorphism checking
as been proven to be NP-complete [38] thus it will be unrealistic
o compare all subgraphs. A slightly less restrictive measure of
 i

5

imilarity can be defined on the basis of the largest common sub-
raphs in two graphs, but unfortunately the problem of finding
he largest common subgraph of two graphs is NP-complete as
ell [38].
To tackle with such two challenges above, gSpan [39] algo-

ithm builds a new lexicographic order among graphs, and maps
ach graph to a unique minimum DFS-code as its canonical label.
ith this DFS-code, gSpan adopts the depth-first search strategy

o discover frequent subgraphs efficiently until either when the
upport of a graph is less than min_sup threshold θ , or its code
s not a minimum code, which means this graph and all its
escendants have been generated and discovered before.
Now we define the component to indicate what frequent sub-

raphs graph Gi have. Given a set of graphs G = {G1, . . . ,Gi, . . . ,

N} and min_sup threshold θ , all different frequent subgraphs
obtained by gSpan are contained in set FSG = {fsg1, . . . , fsgt ,
. . . , fsgν}. The component of Gi is defined as an 1×ν shape vector
cGi = [ηt ]1×ν , where

ηt =

{
1, if fsgt ∈ Gi

0, else
, t = 1, . . . , ν. (9)

Algorithm 2: Component Module.

Input: G = {G1, . . . ,GN}: graphs set; θ : min_sup threshold.
Output: FSG: frequent subgraphs set; cGi , i = 1, . . . ,N:

component for each graph Gi in G
1: % Mining Frequent Subgraphs
2: FSG = gSpan(G, θ )
3: for each Gi in G do
4: FSGGi = ∅

5: for each frequent subgraph fsgj in FSG do
6: if fsgj in Gi then
7: FSGGi = FSGGi ∪ {fsgj}
8: end if
9: end for

10: end for
11: % Getting components
12: for each Gi in G do
13: initialize cGi = [ck]1×|FSG|, ck = 0
4: for each frequent subgraph fsgk in FSG do
5: if fsgk in FSGi then
6: sk = 1
7: end if
8: end for
9: end for
0: return FSG; cGi , i = 1, . . . ,N

4.3. Training

For graph dataset G = {G1, . . . ,Gi, . . . ,GN}, suppose that
all anonymous random walks with length l mined are in A =

a1, . . . , aµ} and all frequent subgraphs mined with min_sup
threshold θ are in FSG = {fsg1, . . . , fsgν}. We leverage PV-
BOW to learn graphs embedding matrix X whose each row is
n embedding of each graph, anonymous random walks matrix
A whose each row is an embedding of each anonymous random
alk and frequent subgraphs matrix MFSG whose each row is
n embedding of each frequent subgraph. Vectors sGi and cGi
re corresponding skeleton and component for graph Gi, i =

, . . . ,N .
The shapes of X, MA and MFSG are N × d, µ × d and ν × d,

espectively, where d is embedding dimension. PV-DBOW treats
raph dataset G as documents set, each graph Gi in G as a
ocument and each substructure mined in Gi as a word contained

n a document.
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random walks matrix MA in µ × d size and skeletons for graphs from G. Meanwhile, component module gets frequent subgraphs matrix MFSG in ν × d size and
omponents for graphs from G. Finally, GraphCSC integrates these two modules and yields global optimization object (14).
w

w

s
g
i
p

5

o
o
b

5

t
s
h
t

To begin with, we focus on anonymous randomwalks and seek
o optimize the following objective function, which maximizes
he log-probability of anonymous random walks appearing in
raph Gi:

max
µ∑

s=1

sGi · e
′

s log Pr(as|Gi), (10)

here e′
s is an 1 × µ binary vector with sth element 1 and jth

element 0 if j ̸= s.
The probability Pr(as|Gi) is defined as a softmax unit parame-

trized by a dot product of as and G i, which are the embedding
vectors of as and Gi:

Pr(as|Gi) =
exp(as · G i)∑µ

p=1 exp(ap · G i)
. (11)

Next, we use same method to maximize the log-probability of
redicting the frequent subgraphs that appear in graph Gi:

max
ν∑

t=1

cGi · e
′′

t log Pr(fsgt |Gi), (12)

where e′′
t is an 1 × ν binary vector whose tth column element is

1 and jth column element equals 0 if j ̸= t .
The probability Pr(fsgt |Gi) is defined as a softmax function

parametrized by a dot product of fsg t and G i, which are embed-
ding vectors of subgraph fsgt and Gi:

Pr(fsgt |Gi) =
exp(fsg t · G i)∑ν

q=1 exp(fsgq · G i)
. (13)

Finally, the global optimization object could be derived from
10) and (12) as:

max
µ∑

s=1

sGi · e
′

s log Pr(as|Gi) + max
ν∑

t=1

cGi · e
′′

t log Pr(fsgt |Gi). (14)

We yield its loss function as following:

L =

µ∑
s=1

sGi · e
′

s log σ (as · G i) +

ν∑
t=1

cGi · e
′′

t log σ (fsg t · G i)

µ∑
log(σ (−ap · G i)) +

ν∑
log(σ (−fsgq · G i)),

(15)
p=1 q=1

6

where σ (x) =
1

1+exp(−x) is sigmoid function.
The last two items in Eq. (15) sum over all anonymous random

walks and subgraphs directly, which are too expensive since µ
and ν usually tend to be very large. Hence we proceed with an
approximation by negative sampling to make the optimization
problem tractable. The normalization terms from the softmax
are replaced by K1 anonymous random walks negative sam-
ples {a′

1, . . . , a
′

K1
} from A but not contained in Gi and K2 fre-

quent subgraphs negative samples {fsg ′

1, . . . , fsg
′

K2
} from F but not

contained in Gi. Thus Eq. (15) can be rewritten as:

L =

µ∑
s=1

sGi · e
′

s log σ (as · G i) +

ν∑
t=1

cGi · e
′′

t log σ (fsg t · G i)

K1∑
p=0

log(σ (−a′

p · G i)) +

K2∑
q=0

log(σ (−fsg ′

q · G i)),

(16)

here a′
p and fsg ′

q are the embedding vectors of samples a′
p and

fsg ′
q respectively, and a′

p belongs to Gi when p = 0, fsg ′
q is in Gi

hen q = 0.
We optimize loss function (16) with stochastic gradient de-

cent and update G i. After the learning process finishes, two
raphs are mapped into closed positions in embedding space
f they share similar skeletons and components, and training
rocess is summarized in Algorithm 3.

. Experiments

In this section, to quantitatively evaluate classifying capability
f our model, we conduct extensive experiments on a variety
f widely-used datasets to compare with several state-of-the-art
aselines.

.1. Datasets

We evaluate our proposed method on binary classification
ask using seven real-world graph datasets whose statistics are
ummarized in Table 1. MUTAG [40] is a dataset of aromatic and
eteroaromatic nitro compounds labeled according to whether
hey have a mutagenic effect on bacteria or not. PROTEINS [41] is
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Algorithm 3: Training.

Input: G = {G1, . . . ,GN}: graphs set; A: anonymous random
walks set; sGi , i = 1, . . . ,N: skeleton for each graph Gi in G;
FSG: frequent subgraphs set; cGi , i = 1, . . . ,N: component for
each graph Gi in G; e

′

1, . . . , e
′

|A|
: |A| binary vectors for skele-

tons; e
′′

1, . . . , e
′′

|FSG|
: |FSG| binary vectors for components; d:

embedding dimension; α: learning rate.
Output: XN×d: graphs representation matrix
1: initialize X = [xij]N×d, xij ∼ N(0, 0.001)
2: for each anonymous walk as in A do
3: for each frequent subgraph fsgt in FSG do
4: L(X) = −sGi · e

′

s log Pr(as|Gi) − cGi · e
′′

t log Pr(fsgt |Gi)
5: X = X − α

∂L(X)
X

6: end for
7: end for
8: return X

Table 1
Statistics of the benchmark graph datasets. The columns are: name of
dataset, number of graphs, number of classes (maximum number of graphs
in a class), average number of nodes/edges.
Datasets Graph ♯ Class ♯ Average node ♯ Average edge ♯

MUTAG 188 2 17.93 19.79
DD 1178 2 284.32 715.66
PTC-MR 344 2 14.29 14.69
NCI-1 4110 2 29.87 32.30
NCI-109 4127 2 29.68 32.13
PROTEINS 1113 2 39.06 72.82
ENZYMES 600 6 32.63 64.14

a set of protein graphs where nodes represent secondary struc-
ture elements and edges indicate neighborhood in the amino-acid
sequence or in 3-dimension space. ENZYMES [41] consists of
protein tertiary structures obtained from the BRENDA enzyme
database. DD [42] is a dataset of protein structures where nodes
represent amino acids and edges indicate spatial closeness, which
are classified into enzymes or non-enzymes. PTC-MR [43] consists
of graph representations of chemical molecules labeled according
to carcinogenicity on rodents. NCI-1, NCI-109 [1] are datasets of
chemical compounds divided by the anti-cancer property (active
or negative). These datasets have been made publicly available by
the National Cancer Institute (NCI).

5.2. Baselines

In order to demonstrate the effectiveness of our proposed ap-
roach, we compare it with several baseline methods, all of which
tilize the entire graph for feature extraction. These competitors
an be categorized into four main groups:

• Graph kernels based methods: The shortest path (SP) [24]
kernel measures the similarity of a pair of graphs by com-
paring the distance of the shortest paths between nodes
in the graphs. Graphlet kernel (GK) [33] measures graph
similarity by counting the number of different graphlets and
Deep GK [44] is deep graphlet kernel. Weisfeiler–Lehman
kernel (WL) [20] uses subtree pattern to mine structure
information and Deep WL [44] is deep Weisfeiler–Lehman
kernel.

• Unsupervised graph embedding methods: node2vec [13]
is an unsupervised task agnostic method that learns en-
tire graph embedding. It proposes every graph into a fixed
size vector containing distributed representation of graph
structures.
7

• Supervised graph embedding methods: PSCN [14] is a
convolutional neural network algorithm which has achieved
high classification accuracy on many datasets.

• Unsupervised graph embedding methods: AWE [27] uses
anonymous random walks to embed entire graphs in an
unsupervised manner.

5.3. Evaluation metrics

To evaluate the performance of GraphCSC, we randomly split
the data into 10 roughly equal-size batches and perform a 10-
fold cross validation on each dataset, in which 9 folds are used
for training and 1 fold for validation. This process is repeated 10
times and an average accuracy is reported as prediction result.
Since we focus on graph embedding and not on the classifier,
we feed the embedding vectors to Support Vector Machine (SVM)
with RBF kernel function and parameter σ varies from the range
[10−4, 10−3, 10−2, 10−1, 1, 10].

5.4. Parameter sensitivity

Since we tend to show that the performance of our model
GraphCSC could have a gain on experiments results than method
only considers skeletons, to explore how the hyperparameters in
skeleton module affect tasks performance will not be our priority.
For brevity, the length l is set as 10 to generate a corpus of
co-occurred anonymous random walks for all given datasets. To
approximate actual distribution of anonymous random walks, we
follow AWE [27] to set the sampling hyperparameters ε = 1
and δ = 0.05. In order to evaluate how the parameter sen-
sitivity of min_sup threshold θ and embedding dimensions dim
affect the classification performance of GraphCSC on datasets, all
parameters are assumed to be default except θ and dim.

We first conduct experiments with dim = 128 and then assess
the classification accuracy as a function of min_sup threshold
θ for different datasets. Best performance is indicated with red
mark in Fig. 6. Then in Fig. 7, experiments examine the influence
of varying dim from [8, 16, 32, 64, 128, 256, 512, 1024] with the
best θs obtained from Fig. 5. The best accuracy is also signed in
red as shown in each figure. We summarize the hyperparameters
used in our model in Table 3.

5.5. Results and discussion

The average classification accuracy (standard deviation) over
10-fold cross-validation of GraphCSC (with θ and dim that lead
to optimal result from Figs. 6 and 7) and baselines on seven real-
world datasets are summarized in Table 2. From the results, it
is evidently shown that GraphCSC is always the best in terms
of performance on 6 datasets with exception on MUTAG, where
GraphCSC gets second best result. More specifically, the proposed
model achieves 3.41% − 30.60% improvement over graph ker-
nels based methods (WL, Deep WL, GK and Deep GK), and is
competitive against graph embedding method (graph2vec) with
3.41% − 30.74% gain in accuracy. However, supervised graph
mbedding method PSCN is more superior with 4.21% higher in
ccuracy in MUTAG dataset classification. It is also obvious that
raphCSC outperforms AWE approach in every single dataset.
his significantly demonstrates the effectiveness of the proposed
odel on classification tasks because it has access to skeleton
nd component features, which enable GraphCSC to get more
omplete and complex structures information. As for PTC-MR
nd ENZYMES, GraphCSC and other baselines generally do not
erform well. This may due to the fact that these two datasets
uffer insufficient data: there are only 344 graphs in PTC-MR
nd 600 graphs in ENZYMES, while there are 1178 graphs in
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Table 2
Classification accuracy (standard deviation) of our method GraphCSC and state-of-the-art baselines on benchmark datasets. The last two
rows denote the θ values and the dim values used by our method for each dataset; these values are determined in Fig. 5 and Fig. 6. ‘‘-’’
means the classification accuracy (standard deviation) is not available in the original papers.
Algorithm MUTAG DD PTC-MR NCI-1 NCI-109 PROTEINS ENZYMES

WL 80.63 (3.07) 77.95 (0.70) 56.97 (2.01) 80.13 (0.50) 80.22 (0.34) 72.92 (0.56) 53.15 (1.14)
Deep WL 82.95 (1.96) – 59.17 (1.56) 80.31 (0.46) 80.32 (0.33) 73.30 (0.82) 53.43 (0.91)
GK 81.66 (2.11) 78.45 (0.26) 57.26 (1.41) 62.28 (0.29) 62.60 (0.19) 71.67 (0.55) 26.61 (0.99)
Deep GK 82.66 (1.45) – 57.32 (1.13) 62.48 (0.25) 62.69 (0.23) 71.68 (0.50) 27.08 (0.79)
graph2vec 83.15 (9.25) 58.64 (0.01) 60.17 (6.86) 73.22 (1.81) 74.26 (1.47) 73.30 (2.05) 44.33 (0.09)
PSCN 92.63 (4.21) 77.12 (2.41) 60.00 (4.82) 78.59 (1.89) – 75.89 (2.76) –
AWE 87.87 (9.76) 71.51 (4.02) 59.14 (1.83) 62.72 (1.67) 63.21 (1.42) 70.01 (2.52) 35.77 (5.93)

GraphCSC 88.42 (6.47) 89.38 (2.73) 64.04 (3.61) 85.70 (4.29) 85.46 (3.66) 76.71 (3.06) 57.21 (5.70)
θ 0.15 0.25 0.75 0.20 0.20 0.60 0.55
dim 128 8 128 16 16 32 128
Table 3
Hyperparameters selected for GraphCSC on different datasets. The first column denotes anonymous random walk
length l, sampling hyperparameters ε and δ, min_sup threshold θ and embedding dimension dim.
Hyperparameter MUTAG DD PTC-MR NCI-1 NCI-109 PROTEINS ENZYMES

l 10 10 10 10 10 10 10
ε 1 1 1 1 1 1 1
δ 0.05 0.05 0.05 0.05 0.05 0.05 0.05
θ 0.15 0.25 0.75 0.20 0.20 0.60 0.55
dim 128 8 128 16 16 32 128
Fig. 6. Here we show parameter sensitivity of min_sup threshold θ in graph classification on MUTAG, DD, PTC-MR, NCI-1, PROTEINS and ENZYMES with fixed
mbedding dimension dim = 128. The best expressions marked by red points are used in our experiments and the (±) standard deviation of each result is indicated
ith gray error bar.
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D, 1113 graphs in PROTEINS, 4110 graphs in NCI-1 and 4127
raphs in NCI-109. The size of dataset is associated with learning
bilities of machine learning models, and insufficient data may
ause insufficient training of our proposed approach.
Fig. 6 presents the classification accuracy of increasingmin_sup

hreshold θ . In MUTAG and NCI-1, experiments get best perfor-
ance with θ = 0.15 and 0.2, respectively; then results decrease
lowly and maintain stable; after θ reaching 0.7 (for MUTAG)
nd 0.6 (for NCI-1), lines drop rapidly until getting to another
lat states. A common phenomenon is that for DD, PROTEINS
nd ENZYMES, accuracy lines increase from the beginnings and
ecrease slowly after meeting the tops. A possible explanation is
hat low θ will lead to more sufficient frequent subgraphs which
ill provide adequate complementary structure information for
attern just using skeletons. As a consequence, this enforces
istinguishing ability. Another interesting observation is that in
TC-MR, performance shows a relatively stable trend with the
8

rowth of θ . The curve has 2 closed top best results when θ =

.25 and 0.75, while the result at θ = 0.75 has only 1% gain over
hat at θ = 0.25. This means that min_sup threshold θ seems to
ot have stronger influence on PTC-MR than on other datasets.
Fig. 7 examines the effects of embedding dimension hyper-

arameter dim. As we can see from the figure, in MUTAG and
ROTEINS, there is a relatively gentle first-increasing and then-
ecreasing accuracy line when dim increases. We note that for
D, the performance line goes down slowly and maintains stable
t around 83% and then again falls quickly. Accuracy in ENZYMES
hanges roughly, indicating that classification result significantly
uffers from embedding dimension dim. While it seems that dim
as no clearly effects on classification results for PTC-MR and NCI-
, the beat dims for MUTAG and ENZYMES center at 128. The dim
alues tend to be small (usually no more than 32) in DD, PTC-MR,
CI-1 and PROTEINS, from which we can infer that small dims
ould reflect more obvious features for these 4 datasets.
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Fig. 7. Parameter sensitivity of embedding dimension dim in graph classification on MUTAG, DD, PTC-MR, NCI-1, PROTEINS and ENZYMES with best min_sup threshold
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. Conclusion

In this paper, we studied the problem of graph classification
nd proposed GraphCSC, a new methodology that learns graph
epresentation from horizontal and vertical perspectives to mine
raph structures, i.e., skeletons and components. Our model is
emonstrated to be superior to approaches which only utilize
keletons. This method treats a graph as a document and different
ubstructures or subgraphs in it as words by NLP framework PV-
BOW, thus the embeddings GraphCSC learns integrate various
ize structures information. Several real-world graph classifica-
ion tasks show that our model can achieve promising perfor-
ances than a list of state-of-art baselines.
For future work, several interesting problems need to be study

urther. We tend to focus on more complex graph structures,
or example, clusters. Since a cluster usually contains dozens or
ven hundreds of nodes and edges, it could show more valu-
ble features which may reflect more implicit graph properties.
e would also like to investigate graph embedding with mixed

tructures from low-order subgraphs to large clusters, and to
erify whether this would be helpful to get better results than
raphCSC.
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